1 Using partial fractions, find $\int \frac{x}{(x+1)(2 x+1)} \mathrm{d} x$.

2 (i) Express $\cos \theta+\sqrt{3} \sin \theta$ in the form $R \cos (\theta-\alpha)$, where $R>0$ and α is acute, expressing α in terms of π.
(ii) Write down the derivative of $\tan \theta$.

Hence show that $\int_{0}^{\frac{1}{3} \pi} \frac{1}{(\cos \theta+\sqrt{3} \sin \theta)^{2}} \mathrm{~d} \theta=\frac{\sqrt{3}}{4}$.

3 In a chemical process, the mass \boldsymbol{M} grams of a chemical at time \boldsymbol{t} minutes is modelled by the differential equation

$$
\stackrel{d M_{-}}{d t} \underset{z\left(1+z^{2}\right)^{\prime}}{M_{-}}
$$

(i) Find ${ }_{f} \overline{1}^{\prime} \quad \overline{12} d t$
(ii) Find constants $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{C} such lhat

$$
\begin{array}{cc}
I \\
\hdashline\left(I+t^{2}\right) & \boldsymbol{B t}+\boldsymbol{C} \\
I+1^{2} .
\end{array}
$$

(iii) Use integration, together with your results in parts (i) and (ii), to show that

$$
M=\frac{K t}{. J 1+, 2}
$$

where \boldsymbol{K} is a constant.
(iv) When $\boldsymbol{t}=\mathrm{I}, \boldsymbol{M}=25$. Calculate \boldsymbol{K}

What is the mass of the chemical in the long term?

4 The growth of a tree is modelled by the differential equation

$$
10 \frac{\mathrm{~d} h}{\mathrm{~d} t}=20-h,
$$

where h is its height in metres and the time t is in years. It is assumed that the tree is grown from seed, so that $h=0$ when $t=0$.
(i) Write down the value of h for which $\frac{\mathrm{d} h}{\mathrm{~d} t}=0$, and interpret this in terms of the growth of the tree. [1]
(ii) Verify that $h=20\left(1-\mathrm{e}^{-0.1 t}\right)$ satisfies this differential equation and its initial condition.

The alternative differential equation

$$
200 \frac{\mathrm{~d} h}{\mathrm{~d} t}=400-h^{2}
$$

is proposed to model the growth of the tree. As before, $h=0$ when $t=0$.
(iii) Using partial fractions, show by integration that the solution to the alternative differential equation is

$$
h=\frac{20\left(1-\mathrm{e}^{-0.2 t}\right)}{1+\mathrm{e}^{-0.2 t}} .
$$

(iv) What does this solution indicate about the long-term height of the tree?
(v) After a year, the tree has grown to a height of 2 m . Which model fits this information better?

5 (i) Find the first three non-zero terms of the binomial expansion of $\frac{1}{\sqrt{4 x^{2}}}$ for $|x|<2$. [4]
(ii) Use this result to find an approximation for $\int_{0}^{1} \frac{1}{\sqrt{4 x^{2}}} \mathrm{~d} x$, rounding your answer to
4 significant figures.
(iii) Given that $\int \frac{1}{\sqrt{4 x^{2}}} \mathrm{~d} x=\arcsin \left(\frac{1}{2} x\right)+c$, evaluate $\int_{0}^{1} \frac{1}{\sqrt{4 x^{2}}} \mathrm{~d} x$, rounding your answer to 4 significant figures.

